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STATEMENT OF SCOPE AND PURPOSE

This paper presents new computational methods that facilitate digital com-
puter analysis of some important military operations research problems. Even though
combat between two military forces is a complex random process, deterministic
Lanchester-type differential equations [1] are commonly used in defense planning
studies. A so-called attrition-rate coefficient in such a combat model represents
the fire effectiveness of a weapon-system type against a particular target type,
i.e. its effective firepower. Time-dependent attrition-rate coefficients are used
to model temporal variations in firepower on the battlefield. For such a variable-
coefficient Lanchester-type combat model, we present a simple numerical procedure
that allows one (without having to explicitly solve the equations) not only to predict
battle outcome but also to parametrically tradeoff quality versus quantity of two

opposing weapon systems.

REFERENCE

[1] L. DOLANSKY, Present state of the Lanchester theory of combat, Opns. Res. 12,
344-358 (1964),
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ABSTRACT

This paper presents a simple numerical procedure for determining the
parity-condition parameter for Lanchester-type combat between two homogenecus
forces. The combat studied is modelled by Lanchester-type equations of modern
warfare with time-dependent attrition-rate coefficients. Previous research has
shown that the prediction of battle outcome (in particular, force annihilation)
without having to spend the time and effort of computing force-level trajectories
depends on a single parameter, the so-called parity-condition parameter, which
only depends on the attrition-rate coefficients. Unfortunately, previous research
did not show how to generally determine this parameter. We present general
theoretical considerations for its numerical noniterative determination.’ This
general theory is applied to an important class of attrition-rate coefficients
(offset power attrition-rate coefficients). Our results allow one to study

such variable-coefficient combat models almost as easily and thoroughly as

Lanchester's classic constant-coefficient model.




1. Introduction

As a consequence of pioneering work by F. W. Lanchester [16] done about the time

of World War I, military operations analysts have used simplified deterministicf dif-
ferential-equation models to develop insights into the dynamics of combat from about
the end of World War II (see, for example, [1], [7-8], [13], [24-28]). The advent of

the modern high-speed digital compucer has made feasible the development and use of

quite complicated versions of such Lanchester-type models as practical defense planning
tools [6]. Thus, today militarily realistic computer-based Lanchester-type models of
quite complex combat systems have been developed. Such models currently exist for
almost the entire spectrum of combat operations, fiom combat between battalion-sized

[9] and division-sized [10] units to theater-level operations [12,14].

A simple combat model, however, may yield a clearer understanding of important

interrelationships that are difficult to perceive in a more complex model, and such
insights can provide valuable guidance for more detailed computerized investigations
(see [7,28]). In this paper we present a new important numerical procedure that 'r
facilitates parametric analysis§ of battle outcomes for such simplified Lanchester-

type models of combat between two homogeneous forces with temporal variations in each
side's fire effectiveness. Previously, such battle-outcome information could only be

readily obtained from constant-coefficient models. These results are not only
significant in their own right but are also useful in the quantitative analysis of
time-sequential combat strategies (see, for example, [19-20]).

It is important for the military operations analyst to have a clear understand-

ing of how force-level and weapon-system-performance parameters interact to determine 1

1-Corresponding stochastic formulations are for all practical purposes analytically
intractable (see Note 1 on p. 65 of [22]).

tAlso frequently called differential models of combat [10].

§In particular, the parametric examination of force-annihilation prediction.

“S. Bonder [1-3] has emphasized the deficiencies of constant-coefficient models
(see Section 3 below).




a battle's outcome. Such knowledge }s particularly useful in weapon-system and force-~
level planning activities for defense planning.* S. Bonder's [1,3,7] pioneering work
on methodology for the evaluation of military systems (particularly mobile systems
such as tanks, mechanized infantry combat vehicles, etc.) provides a motivation for
interest in variable-coefficient, deterministic, Lancﬁester—type combat models such

as we consider in this paper. He has stressed (see pp. 30-31 of [7]) the importance
of analytical solutions to such models for developing insights into the dynamics of
combat by portraying the relation between various factors in the combat attrition
process and the surviving numbers of forces and for facilitating sensitivity and

other parametric analyses (see [5]). Unfortunately, as work by Bonder and Farrell

[7] and Taylor [18,22] shows, the analytical (i.e. infinite series) solution to
variable-coefficient equations generally by 1tse1ft provides little information

about battle outcome because of its complexity. Therefore, one must seek new ways

for developing insights.

Taylor and Comstock [24] have given results that allow one to predict battle
outcome (in particular, force annihilationg) in theory without having to spend the time
and effort of computing force-level trajectories. To be computationally practical,
however, their results require the determination of the so-called parity-condition
parameter (“the enemy force equivalent of a friendly force of unit strength'), which
depends on only the model's attrition-rate coefficients. They analytically determine
the parity-condition parameter for power attrition-rate coefficients with "no offset,"

which allow one to model combat between two weapon systems with the same maximum

tEspecially since one frequently uses models that are so complicated that trends are
not directly discernible without extensive (and costly) computer runs.

I.e. without explicitly computing force-level trajectories.

5Bonder and Honig [8] point out, however, that force annihilation may not always

be the best criterion for evaluating military operations. See pp. 192-242 of Bonder
and Farrell [7) for a detailed Lanchester-type analysis of an attack scenario for
which other "end of battle conditions' play the principal role. Nevertheless, it

is of considerable interest (especially for developing insights into the dynamics

of combat) to be able to easily predict the occurrence of force annihilation.

2




effective range but different range dependencies for each system's fire effective-
ness (see also [23]). It is the purpose of this paper to show how to determine the
parity-condition parameter in other cases, in particular for power attrition-rate

" which allow one to model such combat between

coefficients with "positive offset,
weapon systems with different maximum effective ranges. Our results allow one to

study in general such variable-coefficient combat models almost as easily and

thoroughly as Lanchester's classic constant-coefficient model.

The organization of this paper is as follows. We first review Lanchester-type
equations of modern warfare, especially variable-coefficient formulations. Next we
review force-annihilation-prediction conditions for such models and show how to use
knowledge about the parity-condition parameter for one set of attrition-rate
coefficients to numerically determine it in related cases of interest. This general
theory is then applied to the important case of offset power attrition-rate

coefficients, with detailed numerical examples being given.

2. Lanchester's Classic Combat Formulation.

F. W. Lanchester [16]+ hypothesized in 1914 that combat between two military

1

forces could be modelled by

dx/dt = - ay , dy/dt = - bx , (1
with initial conditions
x(t =0) = x4, ¥yt = 0) = y5 s (2)

where t = 0 denotes the time at which the battle begins, x(t) and vy(t) denote
the numbers of X and Y at time ¢t, and a and b are nonnegative constants which
are today called Lanchester attrition-rate coefficients and represent each side's

fire effectiveness. We will refer to (1) as Lanchester's equations of modern

Tsee also p. 45 of [22].

The equations are only valid for x, y > 0. For example, the first becomes
dx/dt = 0 when x = 0.




!2££§£E-+ Various sets of physical circumstances have been hypothesized to yield
them: for example, (a) both sides are aimed fire and target acquisition times are
constant [27], or (b) both sides use area fire and a constant density defense (see
p. 345 of [13]).

From (1) Lanchester deduced his famous square law

b(x] - (1)) = alyl - y2 (D) . (3

Consider now a battle terminated# by either force level reaching a given "breakpoint':

» ~ ¢BP - JF
for example, Y wins when Xg = x(tf) = Xgp fX Xq but y¢ > ygp fY Yoo where

tes Xes Ve denote final values and Xpp denotes X's breakpoint which is a given

fraction ng of his initial strength. It follows from (3) that

Y will win if and only if 2 g (4)
Yo b{1 - (£,)°}
BP RP
which for a fight-to-the-finish (i.e. fX = fY = 0) becomes the classic result
*0 a
Y will win a fight-to-the-finish if and only if ;—-< JG; . (5)

0
Unfortunately, no relationship similar to (3) holds in general for variable
attrition-rate coefficients.§ This paper, nevertheless, shows how (5) generalizes

in these cases.II Recalling that the time history of the X force level is given by

x(t) = x. cosh/ab t - yO‘j% sinhvab t , (6)

0

we see that the battle trajectories depend on the two weapon-system-performance

1.
Other forms of Lanchester-type equations appear in the literature [13,18], but we

will not consider these here.

+
The modelling of battle termination is a problem area in contemporary defense
planning studies (see pp. 524-525 of [25]).

§
Except when a(t)/b(t) = constant (see p. 48 of [22]).
“So far we have not been able to generalize (4).

4
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parameters: (I) the intensity of combat vab, and (II) the relative fire effectiveness
a/b. Onlvy the relative fire effectiveness, however, determines the battle's outcome

[see (4) and (5) above].

3. Variable Attrition-Rate Coefficients

Bonder [2] has pointed out that in many cases (for example, in the case of mobile
weapon systems) the validity of the assumption of constant attrition-rate coefficients
is open to question (see also [1,3,7]). Thus, we consider

dx/dt = - a(t)y, dy/dt = - b(t)x , ¢7)
where a(t) and b(t) denote time-dependent attrition-rate coefficients. We assume
that a(t) and b(t) are defined, positive, and continuous for t_ < t < + « with

0
to < 0. We also assume+ that alt), blt) £ L(tO,T) for any finite T. We further
take a(t) and b(t) to be given in the form a(t) = kag(t), b(t) = kbh(t), where
ka, kb are positive constants chosen so that a(t)/b(t) = ka/kb when g(t) = h(t).
Analogous to the constant-coefficient case [see discussion after (6)], we have the
two weapon-system-performance parameters: (I) the intensity of combat, I(t) =
Va(t) b(t); and (II) the relative fire effectiveness, R(t) = a(t)/b(t). We accord-
ingly introduce the combat-intensity parameter \I and the relative-fire-effective-

ness parameter )\ defined by

R
AI = wkakb 5 and \R = ka/kb . (8)

Two significant developments in the Lanchester theory of combat during the
1960's were the development of methodology for (a) the prediction of Lanchester
attrition-rate coefficients from weapon-system-performance data by S. Bonder [2,4],
and (b) the (maximum likelihood) estimation of such coefficients from Monte Carlo

+
simulation output by G. Clark [11]. Both these developments and others have

4.
"For convenience, we introduce the notation that a(t) ¢ L(tO.T) means that
f: a(t)dt exists (and is given by a finite quantity). From our assumptions about
0 :
2 o T
a(t) and b(t), it follows that a(t) ¢ L(LO,T) implies that I a(t)dt = + ©

0

+

See |22] for further references.




generated interest in the model (7) and facilitated its application (and that of
its generalization to combat between heterogeneous forces [7]) to defense planning
studies.

A large class of tactical situations of interest can be modelled with the

following general power attrition-rate coefficients [7,22,24]

a(t) = k (¢t + oM, and b(t) =k (¢t +C+ AV, (9)

where A, C > 0. We will call A the offset parameter, since it allows us to model

(with u, v > 0) battles between weapon systems with different maximum effective

ranges. We will call C the starting parameter, since it allows us to model (again

with up, v > 0) battles that begin within the minimum of the maximum effective ranges
of the two systems. For example, let us consider Bonder's [1,3] model of a constant-

speed attack on a static defensive position (see also [18,22]). Then we have
dx/dt = - a(r)y , dy/dt = - B(r)x , (10)

where r(t) = RO - vt denotes the distance (range) between the two opposing forces,

RO denotes the battle's opening range, v > 0 denotes the constant attack speed,

‘0 for r >R,

*{x) =( (11)
oy (1-r/R )" for 0<r<R

a’
u > 0, and Ra denotes the maximum effective range of Y's weapon system. Similarly
for R(r), with exponent Vv > 0. In (11) the parameter u allows us to model the

range dependence of Y's fire effectiveness (see Fig. 1). The offset and starting

parameters are given by
A= (RB ~ Ra)/v ¥ and C = (Ra - RO)/v ’ (12)
and the assumption A, C > 0 implies that RB 2 R, > Ry. From considering (12)

and Fig. 2, the reader should have no trouble understanding our terminology for A

and C.

The time history of the X force level, i.e. the solution x(t) to (7), is

given by [22] 6




ﬁ.am > om (umoys se) pue si193aw (62l = om se pajouap ST 2733eq jo 23uez Zuyuado

3yl (g¢) ‘(28uex se aiay poljouap) uorieledas 80103] 019z 3B 2381 [[I) waisds-uodesam
92103-% 9yl S230UdPp (SITUN X JO I9quUNU x W[ ITuUn)/S3[I[eNSED X 9°Q = O - (0=1)©  (2)
*s1939W (0007 = 5m SB p23j0Uap ST WAISAS 3yl JOo 23uel 2A13D933J2 wnuwrixXew ayl (1) :SILON]
*jue3suod pyay 23uex oaaz 3e A3ITTTqeded [T} pue welsAs uodeam 3yl jo a3uelr aATIdVIJIe

wnwyxew yaym 1 Juauodx? 8y3l uo (1)© IJUSTDTJJL0D 23IBI-UOTIFIIIE 3yl jo aduapuadag
(s1040w) Y ebupny

0052 0002  00SI | 000l 00§ 0
I 2 Ll

o0y

90

A e e e ety - N—

‘T *814

90 (Vo

tueidijj00)

-won iy




~.>\AQM|amv = ) £q uaar8 sy 1932weied

3utiaels ayr (%) .>\Aax|mmv =V 4£q waay8 sy 193jsmeied 38s3yjo a3yl (g) .Amx.uxv

WNEWIUTH > om ‘umoys se °‘pue o& Se pajousp ST (S90103 uaam3aq uoyieiedas TeFIFUT ‘3°F)

3T133eq jo 93ue1 3ujuado 3yy (2) .mm pue um Se palouap 3ie swalsds uodeam om3l ayl jo

sa8uel 3AT303339 wnmwyxem 3yl ([) :SIILON] °Noeile poads-jueisuod SUFI[2Pow SIUSTOJIJ30D
9381--U0TITI3IE 19mod 103 ) 1o3°9meaed SBupliels pue y I932wered 3Jas3yjo jo uopleuerdxy ‘7 ‘BFd

(siojow) 3 ebuoy

00S€ 000€ 00SZ 0002 OO # 000l 00§
T T T T
gy Pu\%
2'0
»0
JUR013 4900
(Y
=U0 1Ay
90
80

S TR P oy < e O 3 T oy e —a




x(t) = x,{Cq(0)C(£)-5,(0)Sy ()} = yo/h (€ (0)S,(£)-8,(0)C, (D)}, (13)

where the hyperbolic-like general Lanchester functions (GLF) Cx(t) and Sx(t) are

linearly independent solutions to the X force-level equation

2
d x 1 da dx =
;;5'— {a(t) EE'} o a(t) ble)x =0 , (14)
with initial conditions
Cx(t=t0)=1, Sx(t=t0)=0,
(15)
{[l/a(t)]dCX/dt(t)}t=t0= 0, {[1/a(t)]dsx/dt(t)}t=t0= /g »

where to denotes the largest finite time at which a(t) or b(t) ceases to be

defined, positive, or continuous. For example, to = -C for the general power attti-

tion-rate coefficients (9). The time history of the Y force level may be similarly

obtained, with CY(t) and SY(t) being analogously defined for the corresponding
Y force-level equation.
For the numerical determination of the parity-condition parameter, it is con-

venient to introduce a new independent variable s defined by

s =K\_ J_  g(o) do , (16)

where the parameter K is to be chosen to simplify the form of J(s) given by (18).

We denote s(t = 0) as S50 and then s, > 0 if and only if t_ < 0. The sub-

0 0
stitution (16) transforms (14) into the normal form [17]
2
X - Je)x=0, (17
ds
where
p DR e (1
J(s) = Kz {g(t)’ ¥ (18)

and t = t(s). We also define the normal-form hyperbolic-like GLF CK(S) and
sx(s), which satisfy (17) and the initial conditions

7




cx(s =0) =1, sx(s =0) =0,
(19)
dcx/ds(s =0)=0, dsx/ds(s =0) =1.
It follows that
cx(s(t)) = Cx(t) 5 and sx(s(t)) = st(t) . (20)

4. Force-Annihilation-Prediction Conditions

THEOREM 1 (Taylor and Comstock [24]): Assume that either a(t) £ L(0,+ ®) or

b(t) £ L(0,+ ®). Then the X force will be annihilated in finite vime if and only if

*
7 X f ey - Q"syg(0)
| Fol T |3 (21)
‘, Q €y (0) - 5,(0)
where the parity condition parameter Q* is unique and given by
S, (t)
X 1
lim e (22)
g0 Cx(B) g

Remark 1: We also have 1lim {SY(t)/CY(t)} = Q* .
t> 4o

Remark 2: When to = 0, (21) simplifies: X will be annihilated in finite time if
and only if xO/y0 < /X;/Q* .

Remark 3: The result (22) suggests a numerical procedure for approximately deter-
mining the parity-condition parameter Q*: we may approximate the parity-condition ;
parameter Q* by Q = l/{Sx(E)/CX(G)}, where t 1is a "suitably large" value of t.

In other words, we may estimate Q* simply by picking a large value for t (we

denote this selected large value by E), computing SX(E) and CX(E), and then form-

ing their ratio. Our estimate for Q* is then given by Q = 1/{SX(E)/CX(E)}. The

only problem is that we don't know how large to take t for "satisfactory'" estima-

tion of Q*: There is an estimation error, E(E) = Q* - a(E), which depends mono-

tonically on t, and a priori we don't know how large this error is. The present

paper develops a bound on the magnitude of this error, and our new error estimate
8




allows the goodness of approximation to be easily evaluated in many cases of interest.
We may also determine the parity-condition parameter with the normal-form hyper-~

L * *
bolic-like GLF, since lim {sy(s)/ey(s)} = 1/2" = K/Q , where Z is called the

s> + oo

modified parity-condition parameter. In fact, we will find it more convenient to do

so. With this in mind, let us introduce the Y-functions CY(S) and sY(s) [corres-

ponding to cx(s) and sx(s)] defined by

dcY/ds = J(s)sX : dsY/ds = J(s)cX . (23)
with initial conditions
cY(s =0) =1, SY(S =0) =0 . (24)

It follows that cY(s) and SY(S) are linearly independent solutions to the modified

Y equation

sl fff leloidsie L o
ds {J(s) ds} : et (25)
and

ey(s(D) = (o), sy (s(0) = (1/K) S,(0) . (26)

In terms of the new time variable s defined by (16), Theorem 1 reads as follows:

THEOREM 2: Assume that either a(t) £ L(0, + ®») or b(t) £L(0, + ®). Then the X

force will be annihilated in finite time if and only if

*
*0 _/}T_é { cx(sy) — Z sy(sy)
¥ = K

£ : @n
Z CY(SO) - SY(SO)

where the modified time variable s is given by (16), and cx(s), sX(s), CY(S)’ and

sY(s) denote the normal-form hyperboiic-like GLF. The modified parity-condition

*
parameter Z is unique and given by
s\(s)
et B (28)
s >4 (x(h) p A

We observe that *
Q =Kz |, (29)




*

and 1lim {sy(s)/cy(s)} = Z . When (27) holds, the time to annihilate X, denoted
S_>+m Y Y

as tﬁ, is determined by x(ti) = 0. If we denote the quotient of the two normal-

form hyperbolic-like GLF sx(x) and cx(s) as nx(s), then it follows from (13) that

{xgey(sgy) + yo(vﬁi/K)sx(so)}

ng(s(eh) = (30)

(xgsy(sg) + Yo(/Mg/Krey(s)}
where

Ng(s) = sy(s)/cy(s) . (31)

5. Determination of the Parity-Condition Parameter.

We will now show how knowledge about the modified parity-condition parameter Z*
for one pair of attrition-rate coefficients, a(t) and bl(t), allows us to determine
Z* for a related pair, a(t) and b(t). With this in mind, let us denote cx(s)
corresponding to a(t) and b(t) as cx(s;a,b), and similarly for Sy and n,-
In other words, we will now write (31) corresponding to the attrition-rate coefficients

a(t) and b(t) as

nx(S;a,b) = sx(s;a,b)/cx(s;a,b) : (32)
In this notation, we will write (28) asf
*
lim nx(s;a,b) =1/2 [a,b] . (33)
s> 4

Our main result is Theorem 5, which gives an error estimate for the approximation

*
that we propose for Z . The theoretical basis for Theorem 5 is given by Theorem 4,
which (in turn) is a consequence of Theorem 3. The proof of Theorem 3 follows along

the lines of well-known arguments (see p. 225 of [15]).

*
1‘We use the notation 2 [a,b] to show that the modified parity-condition parameter is

a functional (i.e. a function for which the independent variables themselves are
functions), which depends on only the attrition-rate coefficients a(t) and b(t).

In other words, the attrition-rate coefficients are functions defined for t, < t<+x,
and the parity-condition parameter depends on these entire functions (and no

merely particular values of them).

10




THEOREM 3 (Comparison Theorem): Let x(t) and xl(t) satisfy

dx
d § 1 dx\ _ = & oL EE i
dt {a(t) dt } b(t)x =0, dt { a(t) dt } by(t)x; =0,

with initial conditions

x(t = to) =0 5 %

{[l/a(t)]dx/dt(t)}t=t0= B, {Il/a(t)ldxlldt(t)}t=t0= B .

where a(t) > 0 and bl(t) < b(t)y for all € > ty- Then xl(t) < x(t) for all

£ > tO as long as x(t) > 0.

B
The basic theoretical result upon which our numerical determination of 2
is based is
THEOREM 4. Assume that bl(t) < b(t) for all t s o Then
* ) *
ny(s;a,b) < 1/Z [a,b] < ny(sja,b) + {(1/2 la,bll)—nx(s;a,bl)} . (34)
PROOF: We observe that [24] nx(s;a,b) satisfies the ditferential equation
; g ods Figeait 12
dnx/ds(s.a,b) = l/{CX(b.d,b)_ g (35)

with nx(s = 0;a,b) = 0, and similarly for nx(s;a,bl). Theorem 3 (the comparison

theorem) yields that cx(s;a,b) > cx(s;a,bl) for all s > 0. Thus, for a&ll s 0

dnx/ds(s;a,b) < dnx/ds(s;a,bl) -

whence integration between 0 and s yields the desired result. Q.E.D.

Similar to the observations made in Remark 3 above, we observe that (33)

A

*
suggests that we estimate Z [a,b] with Z defined by

i(gza,h) = l/n‘(é:a.h) ’ (36)

A

where s denotes a suitably chosen value for s. Moreover, from (35) we see that
nx(s;a,b) is a strictly increasing function of s so that the larger we take s
in (36), the better our approximation becomes. The only problem (see Remark 3) is

11
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~

that a priori we don't know how large to take s for '"satisfactory" estimation

~

*
of Z . Theorem 5, however, tells us exactly how large to take s.

THEOREM 5 (Error Estimate for Approximation): Assume that bl(t) < b(t) for all

~ *
Let fE(s) denote the fractional error made in the estimation of Z [a,b]

2(8;a,b) - 2 [a,b]
*
Z [a,b]

fE(Q) = (37)
Then

0 < £,(5) < {(l/Z*[a,bll) L nx(;;a,bl)} . 3(83a.b) . (38)

~

PROOF: The theorem follows by simple algebraic manipulation after setting s = s

in (34) and using (37). .E.D.

Thus, we have presented a method for numerically determining Z*[a,b]. We
simply pick a large value for s (we denote the selected value as g), compute
sx(;) and cx(g), and then compute the estimate i(g;a,b) according to (36).
Theorem 5 allows us to know the accuracy of our approximation, which can be improved
by taking s larger. Thus, we can numerically determine Z*[a,b] to any specified
degree of accuracy once Z*[a,bl] is known. In the next section we apply this
theory to the analysis of battles modelled with offset power attrition-rate

coefficients.

6. Application of Theory to Offset Power Attrition-Rate Coefficients

In the application of Theorems 4 and 5, two pairs of attrition-rate coefficients
are involved: one pair for which the modified parity-condition parameter is known
[denoted as a(t) and bl(t)], and one for which it is to be determined [denoted

as a(t) and b(t)]. Accordingly, we rewrite (9) with A > 0 as
a(t) = k (t + OY, and b(E) =k (t+C+A7, (39

12
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where (as before) C > 0. We will refer to these coefficients (39) for which A > 0

as power attrition-rate coefficients with "positive offset." If we choose

K = [AI/(u+l)]2p_l , (40)

it follows from (16) that the modified time variable s is given by

+
s(t) = /@) 17P(e + ¥, (41)
and the invariant J(s) of the normal form (17) simplifies to

J(s;ab) = I(siv,m,w) = P+ Ly (42)
S

where p = (WH)/Z, a = 1/(WD), B = (v-)/(tD), v = A-D /Gy ] 27

,and L = u+v+ 2.
Here we have denoted the invariant corresponding to the attrition-rate coefficients
a(t) and b(t) as J(s;Y,M,V), since we may take Yy, U, and VvV as a basis for
generating the four parameters o, B, Y, and Vv that explicitly appear in the right-
hand side of (42). Furthermore, we will denote the normal-form hyperbolic-like GLF
that correspond to J(s;Y,u,V) as cx(s;Y,u,v) and sx(s;y,u,v).

The known results [24] that we use in the Theorems 4 and 5 are for the case )

of power attrition-rate coefficients with no offset [i.e. set A =0 in (9)]

a(t) =k (¢t + O, and b (1) = k (¢t +0)°, (43)

where C > 0. We observe that bl(t) < b(t) for all t > -C. It follows that

B

J(s;a,bl) =g and [24]

z"(a,b,1 = PV ra-p /rp) (44)

* *
Thus, for the bound on Z [a,b] = Z (y,H,v) given in Theorem 4 and the error estimate
for our approximation (36) given in Theorem 5, we have [23]

(1-2p)

nx(S;a,bl) =p Tq(S) " (45)

1/(2p)

where S = 2p s s q = 1-p, and Tq denotes a Lanchester-Clifford-Schafli

(LCS) function,+ which is analogous to the hyperbolic tangent (see Table 1).

TThese functions were introduced in [22] and redefined for reasons of force-annihi-
lation prediction in [23].
13




TABLE I.

LANCHESTER-CLIFFORD-SCHAFLI FUNCTIONS

o 2k
x/2
Fo(x) = T(2) kZO k! T(k + a)

(x/2)?‘k+a)
T'(k +a + 1)

H (x) = T'(a) kzo )
T,(x) = H, _ (x)/F (x)

Relation to normal-form GLF.

cg(8) = F (S) sg(®) = o 7u ()
cy(s) = F(5) sy(s) = p(ZP'l)Hq(S)

where q = 1l-p and

S(s) = 2psll(2p)

NOTE: For U = Vv, we have

(I) cy(s) = cy(s) = Fl/z(s) = cosh s,
(11) sx(s) = SY(S) = Hl/Z(S) = ginh s,

(I11) nx(s) = ny(s) = T1/2(s) = tanh s.




.?-

In fact,
n(s;a,bl) = tanh s, when u =v . (46)
We have thus shown that the following theorem holds.

THEOREM 6: Assume that either p > -1 or v > -1. Then for a battle modelled with

the offset power attrition-rate coefficients (39), bounds on the modified parity-

*
condition parameter Z (y,u,v) are given for 7y > O by

! 1 : q-p J I'(p)
Ny (s;Y,H,Vv) < < nglesy, ) + p ~ 4T i(S) 5 47)
& 2" (yu,v) 2 { s }

1/(2p)

where q = l-p, S = 2ps

, and ﬂX(S;Y,UsV) denotes the quotient of two normal-

form hyperbolic-like GLF for the attrition-rate coefficients (39), i.e. nx(s;Y,u,v)

= sx(s;Y,u,v)/cx(s;Y,u.v).

It follows from Theorem 6 (or, equivalently, Theorem 4) that if we approximate

* DA
Z (Y,u,v) with Z(s;Y,H,vV) defined by

/i(;;Y,U,\)) = 1/nx(§;Y,h,\)) ] (48)

then bounds on the fractional error made in this estimate are given by

5 q-p § I(p) 5 4
0 < £ < P P{ LB - 1 ()} nyEivau, (49)

where fE(§) denotes the fractional error and is defined by (37).
The right-hand inequality in (49) [equivalently, (47)] tells us exactly how
large to take s for the estimation of Z*({ >0,u,v) by 2Z(S;Y,u,v) to any
specified degree of accuracy. The LCS function Tq is involved in the bound on
the fractional error fE(§) in this estimate when U # v.¢ Thus, the LCS functions
as redefined by Taylor and Brown [23] yield valuable information about battles
modelled with not only the power attrition-rate coefficients with no offset (43) but
also the offset power attrition-rate coefficients (39). Availability of tabulations

of these LCS functions is discussed in [23].

..}.

This result is one of our reasons for introducing the normal form (7).

*As (46) and Table I show, Tq(S) = tanh s when u = v.
14




7. Numerical Results

In this section we will examine a couple of numerical examples to show how
the modified parity-condition parameter Z* may be numerically determined and to show
some important insights into the dynamics of combat that may be consequently obtained.
In order to numerically determine the modified parity-condition parameter for the off-
set power attrition-rate coefficients (39), we must use knowledge about how quickly
the limiting value (i.e. Z*Ia,bl]) of a hyperbolic-tangent-like function of a related
pair of power attrition-rate coefficients with '"no offset'" (43) is reached as its
argument is increased [recall Theorem 6 and (49)]. In Fig. 3 we see that this limit-
ing value, denoted as z*(u,v) = Z*[a,bl], is quite quickly reached: 1if one takes
§ = 10.0, then Z*(u,v) is approximated to better than six decimal places by
i(g;u,v) = llnx(g;u,v), where nx is given by (45). Experimental computing for
various values of | and VvV and comparison with the known value (44) for Z*(u,v)
bears out this degree of accuracy [i.e. speed of convergence of Z(s;u,v) to Z*]
for essentially all allowable values of u and v. Thus, i(g;u,v) for the coef-
ficients (43) has essentially converged to Z*(u,v) when § = 10.0, and by Theorem 6
or (49) we know that the same is true for E(Q;Y,u.v) for the coefficients (39).

We have accordingly generated by this procedure the results shown in Fig. 4.
For computing nx = sx/cx, we have used the series solutions shown in Tables II and
III. [In Tables II and III we have for convenience denoted, for example, sx(s;y,u,v)
simply as sx(s;u,v), i.e. sx(s;u,v) denotes Sy corresponding to the general
power attrition-rate coefficients (9) with exponents U and v.] The series were
obtained by solving (17) by the method of successive approximations (see [18]). We
used these series instead of developing approximate solutions by finite-difference
methods because we did not have any error bounds for the latter.

Let us now give an intuitive interpretation of the curves shown in Fig. 4

*
of the modified parity-condition parameter Z plotted versus the modified offset

*
parameter Y. In Taylor and Comstock [24] it is shown that Z may be considered

15
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TABLE TII

NORMAL~FORM OFFSET LINEAR LANCHESTER FUNCTIONS

| § $ 2K g AL
eg(s31,1) = : i
! e geg Soh)= p AW
® k4l

k . k|
" = 2 (B e
sx(sil1,1) (2k+1)' Z Bk( /g:-)

where the offset coefficients are given by

Al =1, and for k > 1

j . 4k(4k-2) i i
A ® GR-1) Gk-2=7) ) v a ol

I A
.
| A
=

‘Bg=l, and for k > 1

j o 4k(4k+2) 3 i-1 .
lBk (4k=-3) (4k+2-3) {Bk-l = Bk—l} for 0% j<k

TWe have adopted the convention that Ai % Bi =0 for j <0 or




TABLE III

OFFSET POWER LANCHESTER FUNCTIONS FOR yu =1 AND v = 2

(—52- 55/4)

k=0 k! T(k +3) j=0

- 2k

2k

2 ()

2(k+2/5) 2K
%

; = (31/5 2 i)
= Rl e 30

cx(s;i,Z) T(%)

= &

where the offset coefficients are given by+

>
1

1 and for k > 1

5k (5k-2)

J . j-2 j-1 j
i By (5k-3) (5k-2-3) (A1 + 28 1 A ) for 0 2k

A
.
A

B, = 1, and for k > 1

" 5k (5k+2) j-2
B = ko1 (Skda=y) B~y * 2B

TLwe have adopted the convention that Aﬂ, Bj =0 for <@ or > 2k.




! to be the initial Y force level that leads to a draw’f(i.e. parity between the
forces) in the battle against an X force of "unit strength"
dx/ds = -y with x(s =0) =1 ,

: . (50)
| dy/ds = -J(s)x with y(s = 0)

L}
N

] where J(s) denotes the invariant of the normal form (17). Thus, we may consider
*
é Z to be "the Y equivalent of an X force of unit strength" for the modified

i battle (50). Now let us consider the general power attrition-rate coefficients (9)

with exponents p and V. As we did in Tables II and III, we will denote the corre-
sponding J as J(s;u,V) and Z* as Z*(u,v) to stress the dependence on | and
v (but suppressing that on Y). We then have from (42) that J(s;1,1) =1 + y/Vs
and J(s;1,2) = /5 (1 +y//5)2. From (44) we find that 2 (1,1) = 1.000 and Z (1,2)
= (0.806 for Y = 0. Observing that for Yy > 1 we have J(s;1,1) < J(s;1,2) for all
s > 0, it is intuitively clear from (50) and the interpretation of Z* as a force
equivalent that we must have Z*(l,l) < Z*(l,Z) for all Y > 1 because X always
has greater fire effectiveness against Y when u =1 and v =2 than when u =1
and Vv = 1. However, for Y near zero, the situation is reversed and Z*(l,Z) must
lie below Z*(l,l) for Y near zero. Thus, we have given an intuitive explanation
of why Z*(l,2) lies below Z*(l,l) for Y near zero but above it for Yy > 1 as
Fig. 4 shows.

Next, we will consider numerical results for a particular battle to show some
of the important insights that may be gained into the dynamics of combat from our new
results. As in [18,22,23] we consider S. Bonder's [1,3] model (10) for the constant-
speed attack of mobile forces against a static defensive position. We will focus on
the new results given in this paper (in particular, the prediction of battle outcome
from initial conditions without explicitly computing the force-level traiectories).
Input data and computed parameter values are shown in Table IV. We will now consider
two cases: (1) RO = 1500 meters, and (I1) R, = 1250 meters.

+In other words, x(s) and y(s) > 0 for all s « [0,+) but limq *px(s) = (

= lims.’+ay(8)-

16
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TABLE IV

PARTICULARS FOR THE NUMERICAL EXAMPLES

Input Data
H=V=1

ay= 0.06 X casualties/minute/Y unit
80= 0.6 Y casualties/minute/X unit

Ru= 1500 meters, RB= 2000 meters

v = 5 miles/hour

Parameter Values

>
([

ka= 5.364 x 10-3 X casualties/minute/Y unit

kp

P

4.023 x 10-3 Y casualties/minute/X unit

q=1/2

3.728 minutes, Y = 0.320 (casualtieS'minutes)l/2

eiiiinio . e . X o

= e



When Ro = 1500 meters, we have C = 0 and Sy = 0. The maximum time that
the battle can last is tmax = 11.18 minutes, since at this time the advancing
attackers overrun the defensive position. In this case Z*(y,u,v) = Z*(O.32,1,1)
= 1.381, so that Theorem 2 tells us that X can be annihilated <==> xO/y0 < 0.264.
By (30) the X-force annihilation time is given by nx(s(ti)) = 2.739x0/y0. For

X = 10 and ¥q 50, we have nx(s:) = 0.54772 so that by the techniques+ introduced
X

in (23] we find sX = 0.771. Hence, (36) yields tX = 10.25 minutes and r\ = 125.7
meters. Further results are given in Table V.
When R, = 1250 (see Fig. 5 of [22]), we have C = 1.864 minutes, s. = 0.0255

0 0

and tmax = 9.32 minutes. In this case X can be annihilated <==> xo/y0 < 0.281

with the X-force annihilation time given by nx(sz) = (1.001u0 + 0.009)/(0.127u0+ 0.366),
where ug = xolyo. Numerical results are given in Table VI. Finally, these parametric
results should be contrasted to those previously possible (e.g. compare tkem with,

for example, the single force-level trajectory for R8 = 2000 meters shown in Fig. 5

of [22]).

8. Discussion

S. Bonder [1-3] has emphasized the shortcomings of constant-coefficient
Lanchester-type combat models. Work by Bonder [1,2], Clark [11], and others [7] on
the prediction of Lanchester attrition-rate coefficients¢ has generated interest in
variable-coefficient models. Moreover, there is not only intrinsic interest (see
[1,3]) in the model (7) but also interest for obtaining insights into the behavior

of complex Lanchester-type system modelsf that have been enriched in military detail

.These computations involve the generation of a table of s
y = 0.32, py=v =1 (see [23]).

X CX‘ and nx for

*See Taylor and Brown [22] for further discussion and references.

§For example, the Bonder-IUA model (see [7-9]).
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te =11
max

ft =9
max

TABLE V

ANNTHILATION OF THE X FORCE AS A FUNCTION

OF THE INITIAL FORCE RATIO FOR R_ = 1500 METERS

(xo/yo)
0.250

0.200

0.167

.18 minutes and

0

tﬁ(minutes) ri(meters)
14.09 e UL
10.25 125.7
8.80 319.4

X = x(r = 0) = 2.48

TABLE VI

ANNTHILATION OF THE X FORCE AS A FUNCTION

OF THE INITIAL FORCE RATIO FOR Ro = 1250 METERS

(xy/3)
0.250

0.200

0.167

.32 minutes and

tx(minutes) rx(metets)
a a
10.87 WAL
8.17 154.4
6.93 320.4

X, =x(r =0) = 1.74

f




see [7-10,12,14]). The attrition-rate coefficients in (7) represent the fire
effectiveness of the combatants and allow us to model temporal variations in fire
effectiveness on the battlefield. Interest in the general power attrition-rate
coefficients (9) is provided by S. Bonder's [1,3,8] constant-speed attack modeif
(10)-(11) and his examination of the range dependence of attrition-rate coefficients
for various weapon systems (see pp. 196-200 of [7]).

We have given results that allow one to study the variable-coefficient model
(7) [especially with the general power attrition-rate coefficients (9)] almost as
easily and thoroughly as Lanchester's classic constant-coefficient model (1). Taylor
and Comstock [24] (see Theorems 1 and 2 above) have shown how to predict force
annihilation without having to spend the time and effort of explicitly computing
force-level trajectories. Using their theoretical results, we gave results in a
previous paper [23] that made combat modelled by power attrition-rate coefficients
with no offset* [i.e. A =0 in (9)] almost as easy to analyze as the constant-
coefficient case. The results of the paper at hand allow one to analyzed combat

§ [i.('. A>0

modelled by power attrition-rate coefficients with positive offset
in (9)] just as conveniently.

Theorem 1 (see also Theorem 2) is the generalization of the classic constant-
coefficient result (5) to cases of time-dependent attrition-rate coefficients. How-
ever, one needs to know the value of the so-called parity-condition parameter Q*
in order to predict force annihilation in specific instances. In this paper we have
presented theoretical considerations (see Section 5 above) for the noniterative

numerical determination of the parity-condition parameter. We applied our general

theory to the specific case of general power attrition-rate coefficients (9) (see

1.'I'hus, the range between firer and target changes during the engagement.

Modelling, for example, combat between two weapon systems with the same maximum
effective range.

§

Modelling, for example, combat between two weapon systems with different maximum
effective ranges.




Section 6) and illustrated these theoretical results by considering some numerical
examples (see Section 7).

Curves of the modified parity-condition parameter Z* plotted against the
modified offset parameter <y such as those shown in Fig. 4 allow one to parametrically
analyze '"modern" combat modelled with the general power attrition-rate coefficients
(9). For example, we can now parametrically+ determine whether the defender will
be overrun in Bonder's [1,3,8] constant-speed-attack model (10) with attrition-rate
coefficients (11) without having to compute the entire force-level trajectories. We
illustrated this analysis capability with some numerical examples, which showed that
the defender's annihilation (i.e. saturation of his defensive position with offensive
fire) depended on the initial force ratio (of defender to attacker) being below a
certain threshold value. Our new results allow one to not only easily determine such
force-ratio thresholds of survivability but also study their dependence on weapon-
system—-capability parameters.

Our new results let us conveniently obtain much valuable information about
the model (7).* Previously one was limited to only computing force-level trajectories,

but now we can predict battle outcome (in particular, force annihilation) without

explicitly computing force-level trajectories. Moreover, these new results facilitate
parametric analysis§ of such combat situations. In particular, Theorems 1 and 2
explicitly exhibit a tradeoff between quality (as quantified by the relative-fire-
effectiveness parameter AR and the parity-condition parameter Q*) and quantity

(as quantified by the initial force ratio xO/yO) of two weapon sys*ems in combat

against each other. In other words, one can use an expression like (21) to develop

TVarying, for example, the maximum effective range of the defender's weapons.

*The classic ordinary differential equation theories (see, for example, Ince [15])
were inadequate to answer many important questions (for example, "Who will win?
Be annihilated?") about such combat models.

§S. Bonder [5] has suggested that an increased emphasis be placed on parametric
analyses in systems analysis studies (see pp. 21-22 of [5]).
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quantitative insights into how the quality of a weapon system may be substituted
for sheer numbers. Moreover, an unanswered theoretical question is to determine
how the parity-condition parameter Q* depends on the combat-intensity parameter
AI and the relative-fire-effectiveness parameter AR. Finally, our results here
are signposts as to the difficulty of amalytically extracting information (particu-
larly parametric information without excessive computations) from variable-coef-

ficient Lanchester-type models such as (7).
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